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The Modified Successive Overrelaxation Method 
with Fixed Parameters 

By David R. Kincaid and David M. Young* 

Abstract. Expressions for the spectral radius and for certain norms of the modified 
successive overrelaxation method with fixed parameters are derived. Also established 
are expressions for the virtual spectral radius and for certain virtual norms of this method. 
Parameter restrictions are determined so that the spectral radius and the norms coincide 
with the virtual spectral radius and the virtual norms, respectively. Optimum parameters 
which minimize these expressions are obtained. These results extend those of Young [11], [12]. 

1. Introduction. We consider convergence properties of the modified successive 
overrelaxation method with fixed parameters for solving the system of equations 

(1.1) Au = b. 

Here A is a real square positive definite** matrix of order N, b is a real vector, and u 
is the solution vector which is to be determined. We assume that A has the form 

(1.2) A - [D1 H] 
H2 D2J 

where D1 and D2 are square diagonal matrices. Letting D be the diagonal matrix 
whose diagonal elements coincide with those of A, we note that 

(1.3) B= I- D-1A 0 F] 
G O 

where F = -D 1H1 and G = -D-1H2. 
To define the modified successive overrelaxation method, we first write (1.1) in the 

form 

Ul = Fu2 + C1, 

U2 = Gul + c2 

with u and c = D-lb partitioned according to the representation (1.2) of A. The 
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modified successive overrelaxation (MSOR) method is given by 
(M +1) 

(1.4) U1m+l) = w I{Fu(m + c1} + (1 - 
(M) 

(1.4)(m1) +21 in1 

U2m+l = c>'{Gu(m+l) + C2} + ( - co )u M > 0, 

where w and co' are fixed relaxation parameters such that 0 < co < 2 and 0 < co' < 2. 
Evidently, we may write (1.4) in the form 

(M +1) +M u = ?,U(m) + k 

where 

I, ? - (I -co) I, cF 

(1.5) -W'G I21 0 (1 CO')I2] 

1 -)wfG w'GF + (1 -cof)I2 

and 

k [ ll~I 0 l l ci 
-Wf'G I2 1 ,c2 

A means of determining the convergence behavior of the MSOR method is 
obtained by the spectral radius of ?2, , which is the modulus of the eigenvalue of 
largest modulus and is denoted by S(Ce e). Young and Kincaid [10] established a 
"basic eigenvalue relation" for 2 X 2 block matrices (see also Young [12]). This 
eigenvalue relation applied to ?c, , implies the following. 

If ,u is an eigenvalue of B and if X is an eigenvalue of 

(1.6) M = (Mi,,) = [ 1 co 2 +1 - 

t( co)cof 1. 2oo, +1-cJ 

then X is an eigenvalue of ? ,. An exception is made for the case ,u = 0 where at 
least one of the eigenvalues of M, but not necessarily both, is an eigenvalue of ?, c . 
Conversely, if X is an eigenvalue of ?,,, then X is an eigenvalue of M for some 
eigenvalue 1u of B. 

Thus, the eigenvalues of ?,, and B are related by the quadratic equation 
det(M - XI) = 0 which is of the form 

(1.7) -2 t( Co,w')X + (CO, Co') = 0, 

where 

t(,, co, co') = trace M = M1l1 + M2,2, 

b(co, co') = det M = M1 M2 - M2 Ml 2 

As in [11], we study the virtual spectral radius of ?< which is given by 

(1.8) 3(w U, ) = max y(y, co, co'), 
A E S B 

where -y(.t, co, co') is the root radius of (1.7) for each ,u, i.e., the maximum of the moduli 
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of the roots of (1.7) for each ,u. Here, 3B is the convex hull of the set of eigenvalues 
of B. Clearly, S(S, &) < (_ ,), with equality whenever the maximum in (1.8) 
occurs at an eigenvalue of B, and such a maximum root of (1.7) is an eigenvalue 
of S, , for this eigenvalue of B. 

Other measures of convergence are based on various norms. The spectral norm of 
S,& ,is defined by 

(1.9) ISt , 'I f 2 ={ 

The D 12-norm and the A112-norm of S,, are given by 

(1.10) II(t)2,Cw'TIID1/2 = ID1/2S ,D-1/2 

1IS ,, 'IA1/ , = I1A/22 c,coA -1/2I2 

The virtual D"'2-norm and the virtual Al 2-norm of S, , are given by (1.10) and (1.9) 
with the virtual spectral radius of the appropriate matrix. We denote the virtual norm 
with an asterisk to the right of the norm. Clearly, IIs<,W,IID1/2 _ tCW,W'IDl/2 and 
I1 wl J1A 1 _ IIs1/2 with equality whenever the virtual spectral radius coincides 

with the spectral radius of the appropriate matrix. 
When determining either the (virtual) spectral radius, (virtual) Dl/2-norm, or 

(virtual) A"12-norm, it is shown in Young and Kincaid [10] that it suffices to assume 
that A has diagonal elements of unity and, consequently, that A = I - B. For more 
details on this and for more information on material given in this section, see Young 
[11], [12] and Kincaid [6], [7]. 

Evidently, the D12 -norm is given by IICA, A'IJD1/2 = {S5(SA),(A,1 
c 

T, 1/ 2. Con- 
sequently, the virtual D 12-norm is obtained from 

(1.11) IIS<, <, 1l*l/ = max r (,), 
eS B 

where P(,u) is the root radius for each 1u of the quadratic equation 

(1.12) A2 - T(I. co, co')A + A(co, w') = 0 

and where 

T(u, w, w') = trace MMT = M2,1 + M,2 + M2,1+ M2,2, 
A(c,, w') = det MMT = (M1,1M2,2- M2-1M1,2) 

The A12 -norm is given by 

(1.13) IIS4 (, |'IA1/2 = { S(SX QR A S,, s A)} / 

where S = A 12.C, 1A"2. Moreover, the virtual A 1/2-norm is obtained from 
(1.8) with the appropriate matrix from (1.13). 

In Section 2, we determine an expression for the (virtual) spectral radius of ? 
and also convenient upper and lower bounds. The domain in the (co, co')-plane where 
the spectral radius and the virtual spectral radius coincide is established. These 
results are then used to obtain corresponding expressions and bounds for the A 12- 
norm. 

Young [11] discussed the problem of choosing co and c' to minimize the virtual 
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D 12-norm of S, .. A partial solution of this problem was stated there without 
proof. In Section 3, the problem is solved completely. Also, an expression for the 
(virtual) D12 -norm is given and the region of agreement between the D 12-norm and 
the virtual D 1/2-norm is obtained. Perspective graphs are given that illustrate the 
behavior of the virtual spectral radius, the virtual Al2-norm, and the virtual D11'2- 
norm. 

The development of the MSOR method has resulted from the work of De Vogelaere 
[1], Young, et al. [9], McDowell [4], Taylor [5], Young and Kincaid [10], Young [11], 
Kincaid [6], [7], and, most recently, Young [12]. The theorems in this paper expand 
those of Young [12] on the virtual spectral radius, the virtual A12 -norm and the 
virtual D"12-norm. Interest in this area has been expressed in recent papers by Ehrlich 
[2], [3] where the MSOR method with fixed parameters is used for solving the bi- 
harmonic equation as a coupled set of finite-difference equations. 

2. Spectral Radius and Al'2-Norm. We now determine an expression for the 
(virtual) spectral radius of Se, and determine when the spectral radius and the 
virtual spectral radius coincide. Note that this theorem is implied by the discussion 
given by Young [12]. 

THEOREM 2.1. If A is a positive definite matrix of the form (1.2), if O < X < 2 and 
0 < ,' < 2, and 

(i) if co + '-2cco' < 2, then 

(2.1) SWC , ) = 3(S ,, ,j = (w,') + {o2(, Co,) - (Co- l)(c - 1)11/2 

where 

(2.2) o(w, c) = 2 -c - co' + cLx6'p2j, 

(ii) if co + 1-,u2coCO, > 2, then 

(2.3) 3 =- 1, c > 

= c'- 1, co < c> 

Proof. From Section 1, the virtual spectral radius of ?, is the maximum root 
radius of the characteristic Eq. (1.7) over the interval - p _ .4 ? u where p = S(B). 
Evidently, 

(2.4)~~~~~~~~~~~~~~~~~~~~~~~~~ (2.4) t(y, co, @)=2 -@_,+ COC,A2 

b(@, c') = ( - 1)(c' - 1). 

Notice that this quadratic equation can also be written in the form 

(X + 1- l)(X + "- 1) = 2X 

The maximum root radius of (1.7) for fixed X and c,' is found by maximizing It(,5 , w')I 
over the interval - p ? A _ p (see Young [11] for details). Since t(u) =t(,u, , co') is a 
linear function of /2 we have 

max It(u)I = max{It(0)1, It(p)I}. 

We note by Fig. 2.1 that in the (co, co')-plane there are two pertinent regions since X 
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FIGURE 2.1 

and co' are fixed between zero and two. We let Region I and Region II be such that 
t(,u) -< - t(O) and t(,u) > - t(O), respectively. 

Consequently, we have 

max jt(,u, w, w')l It(.p, W, CO'), (co, WI) (E Region 11, 

1t, Region I. 

Since ,u is necessarily an eigenvalue of B, we have established (2.1) in Region II; 
however, since zero is not necessarily an eigenvalue of B, we can establish only an 
expression for the virtual spectral radius in Region I. O 

We now prove 
THEOREM 2.2. If A is a positive definite matrix of theform (1.2), then,jfor X + c' - 

_p@t< 2, O < w < 2, and O < w' < 2, we have 

(2.5) min S WS,<@) S lb, (b) = WJb- 

Moreover, 

(2.6) min S(<,t S2bx) (b 1, 
O<wO< 2;0<w 1 '< 2 

where COb =2/(1 + (I - 
, 2)1/2) . Also, for O < X < I and O < co' < 1, we have 

(2.7) 1 cc' 21-U)<S2,,,' (e<oj)< I @ t1- 

Proof. From Young [1I 1], [ 12], we have (2.6) and, consequently, (2.5) by (2. 1). 
The spectral radius of S<,,for O < co < I and O < co' < 1, is the root radius of 

(2.8) X2 _ [2 - X _, + WW,p2]X + (@- _)(WI 1) = 0, 

where O < q < 1. Letting 0 =I1 X, we have 

(2.9) 02 
[co + co, (A),p()2pe + WW,o(, _ 2 ._ 



710 DAVID R. KINCAID AND DAVID M. YOUNG 

Next, letting 0 = - coco'(l - p2), we have 

(2.10) 2 - + coco'(2- .2)]4 + Co'(Co- 1)(c' - 1)(1 -0 ) = 0. 

Since c + co' - -'(2 - 2) > C02 + (cW')2 - 2ww' > 0 and since the roots of (2.10) 
are real, both roots of (2.10) are nonnegative. Hence, the right-hand inequality of 
(2.7) follows. The smaller root of (2.9) is given by 

a = 2coco'(1 - ,p2)[w + (w2 - 4c_c'(1 - 2 

where w = co + c- - coc,.2 Consider a - (@)1/2(1 - .2) = (@)1/2(1 - p2)R 
where R 2(coco)2[v + (V2 - 4coco'(I - _2))1/2]-1 - 1 with v = (ca//W) + 
(C9/Cd )1/2.(@@t)1/2. But v _ 2-p2, since (>'/w)112+(w/w')112 

? 
2 and (Cc)1/2 < 1 

Therefore, R ? 0 and 0 ? (C0C0')1/2(1 _ q2). Consequently, the left-hand inequality 
of (2.7) holds. E 

The result (2.6) was proven by Young, et al. [9]. The second inequality of (2.7) is 
stronger than a similar result which was stated by Young [1 1, p. 80], [12, p. 282] and 
for which an incorrect proof was given. 

Fig. 2.2 illustrates the behavior of S(4( ,&) for 0 ? co ? 2 and 0 < co' _ 2. The 
point of the partially hidden cusp in the perspective graph corresponds to the value of 
the virtual spectral radius at (cb, c,b). Notice that the virtual spectral radius is a 
positive function of co and co' with the value unity at the boundary of the square 
0 ? co < 2 and 0 < co' < 2. 

FIGURE 2.2. Virtual Spectral Radius of ?&, ,..'. 
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We now determine the (virtual) A _2-norm of ?, ,,. From Young [11], [12], 
we have 

co? (? )T, = S(4@(2 ) , (2-w')) 

so that we obtain the following from (1.13), since 0 < co(2 - co) ? 1 and 
0 < co'(2 - co') < 1. 

THEOREM 2.3. If A is a positive definite matrix of the form (1.2), and if O < < 2 
andO < co' < 2, then 

(2.11) II4ew,wII A1/2 = I12w,wIIA1/2 = {S(2w(2-w),w (2w' ))} 

and 

(2.12) { 1 -cxco'(2 - c)(2 c')(l -g2)11/2 

? I1 'II |A'/2 = II2 |IIA*1/2 _ 1 - i(2 - w)(2 - -')(1 
Also, 

min II,,w, W' IIA1/2 
(2.13) o<w<2;0<w'<2 

= mmin IK IIA1/2 = II1,1IIA1/2 = II21,1IIA1/2 = I. 
0< w<2 ;0< w '<2 

Fig. 2.3 illustrates the behavior of the (virtual) A 12-norm of , ,, for 0 ?< 2 
and 0 < c' < 2. 

FIGURE 2.3. A1 12-norm of S, WI 
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3. D1'2-Norm. We now consider the problem of determining the (virtual) 
D"2-norm of ? ,, and the values of w and w' which minimizes the (virtual) D"'2- 
norm. 

THEOREM 3.1. If A is a positive definite matrix of the form (1.2), if O < w < 2 and 
0 < w' < 2, and 

(i) if WI + (W)2+ + + g2)(WW')2 + 2ow'(1 - 2') _ 0, then 

(3.1) IIX.XII = II,CW,w'IIDl/2 
= it{.C, W,W) + {t2(g,C,W,) + I(C- 1)(W, - 1)111/2 

where 

(3.2) (th,) 
[ I - I I 1]2 + [(W + W,)2 _ W(W )2(4 w)]2 + (WW')2U41 

(ii) if w02 + (W,)2 + (1 + a2)(WW,)2 + 2ww'(1 - 2') < 0, then 

(3.3) |I2W,W ID'1/2 = ' - 1. 

Proof. From Section 1, the virtual D"12-norm of ?,, is given by (1.11). For 
notational simplicity, we let x = X and y = c'. From (1.12) and (1.6), we have 

(3.4) T(,u, x, y) = (1 -XX)2 + (1 -x)2y2u2 + x22 + (xy42 + 1 y)2 

L(X, y) = (1 - X)2(1 _ y)2. 

For fixed x and y such that 0 < x < 2 and 0 < y < 2, we observe that, for T(,u) 
T(,u, x, y), 

(3.5) max IT() = max{T(O), T(,)}. 

By Fig. 3.1, in the (x, y)-plane there are two pertinent regions. 

(4/(/ 

Region II- 

//~~~~~ 

,//~~~~~ 

2 /~~~~~~~~~~~ 

FIGURE 3. 



THE MODIFIED SUCCESSIVE OVERRELAXATION METHOD 713 

We let Region I and Region II be such that T(j) ? T(O) and T(,u) ? T(O), re- 
spectively. It is easy to show that T(p) = T(O) if and only if 

(3.6) x2(A2y2 + y2 + 1) + x(2y - 4y2) + y2 = 0. 

Clearly, we have 

max IT(U, x, y)l = T(i, x, y), (x, y) C Region II, 
(3.7) 

= T(O, x, y), (x, y) C Region I. 

Since 

(3.8) rP12 - - 2 V)112 + I(T + 2V/A)12, 

the proof follows from (3.4), (3.6), and (3.7). Clearly, the D"12-norm and the virtual 
D 12-norm coincide in Region II. O 

We now determine the values of co and co' which minimize the (virtual) D 12-norm 
of ., &. 

THEOREM 3.2. If A is a positive definite matrix of the form (1.2) and 
(i) if O < g ? (1/3)1 /2 then 

(3.9) min = |1/o2,o'IIrn/2 = (1 -c)), 
O<w<2;0<&X'<2 

and 

min = 1 = (1 - coO)1/2 = ,/(l + q2)1/2 
0< X <2;0< '<2 

where coo = 1/(1 + 2) , = 1/(1 - 2) 

(ii) if (1/3)1/2 ? j < 1, then 

min ||e, ||D1/ - 50Z D1/ 
(3.10) 0<w<2;0<w'<2 

o = co - 1 = (1 + g2)/(3 - ,U2) 

where coo = 4/(5 + '2) Co, = 4/(3 - j2). 

Proof. As before, we let x = co and y = co'. We now establish the minimum point 
for the virtual D"12-norm when restricted to Region I. By (3.3), the point which 
minimizes the virtual D"12-norm in Region I lies on the boundary C between Region I 
and Region II. In order to lie on C such a point must satisfy Eq. (3.6) which has two, 
one, or no real roots depending on whether the discriminant 4y3[(3 - ,u2)y - 4] of 
(3.6) is positive, zero, or negative, respectively. Thus, as indicated in Fig. 3.1, if 
y > 4/(3 - a2) then there are two real roots of (3.6), and if y = 4/(3 -2) then 
there is only one, namely, x = 4/(5 + . Notice that the virtual D112-norm on the 
boundary y = 2 of Region I is unity by (3.3). Since by (3.3) the virtual D"12-norm is 
independent of x and since at y = 4/(3 -2) and x = 4/(5 + I the virtual D _2- 
norm is less than unity, it follows that the optimum relaxation parameters with regard 
to the virtual D 12-norm are x = 4/(5 + 

qU2) and y = 4/(3 - 2) when restricted to 
Region I. 

Next, we seek the minimum values of x and y for the D 12-norm when restricted 
to Region II. We note that, from (1.12) and (3.8), 

2r /2 = R1 + R2, 
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where 
2 = (Ml,1 - l2,2) + (Al12 + A2,1), 

R2= (Ml,1 + M2,2) + (A1,2 - A2,1)M 

Clearly, by differentiating with respect to either x or y, we have 

2(Fr)' Y = [(Ml,1 - M2,2)(Ml,1 - M2,2) + (Ml,2 + M2,1)(Ml,2 + A2,1)]/R1 

+ [(A1,1 + M2,2)(MlA,l + M2A,2) + (Ml,2 - M2,1)(Ml1,2 - M2,1)]IR2, 

whenever R1 # 0 and R2 # 0. By defining 

0=ta 1 (Ml, 2 + M2,1 

(3.11) al\=Ata~l, 1_ M 2,2 

02 = tan (M' 
2 M2- 1 

\Ml,1 + M2,2! 

we have 

(F112)' = sin 4(0l - 02){M2,2 sin 4(01 + 02) + M2,1 cos (0l + 02)} 

+ cos 
1(02 

- 02)1M 1, cos 2(01 + 02) + M1,2 sin 2(01 + 02)}. 

From (1.6) it is easy to show that 

a F1/2/9x ={, sin 2 (01 + 02) - cos 2 (01 + 02)} { y; sin (01 - 02) + cos 2 (1- 02)} 

and 

ar112/ay = {sin 2(01 - 02)} {)(xj2- 1) sin 2i(01 + 02) + (1 - x) cos 2 (0, + 02)}. 

Notice that ,u is used, since we are restricted to Region II with IF12(g) from (3.1). 
Thus, we have 0qFl12/1x = 0 if at least one of the following conditions holds 

(3.12) tan 2(01 + 02) 1/= , 

(3.13) tan 2 (01 - 02) = -l /GUP) 

and aOFl/2/ay = 0 if at least one of the following conditions holds 

(3.14) tan 2(01 + 02) = (1 - x)g/(l -Xg), 

(3.15) tan 1(01 - 02) = 0. 

Clearly, (3.15) and (3.13) cannot hold simultaneously, since 0 < y < 2 and 0 < A < 1. 
Moreover, (3.12) and (3.14) are not simultaneously satisfied, since ,u # 1. Hence, 
a r' 2/ax and a Fl' 2/ay vanish simultaneously when and only when at least one of 
the following two sets of conditions hold 

(3.16) tan 2(01 + 02) = (1 -x)/( -X), 

tan 2 (01 - 02) = -l I(YA 

(3.17) tan 2(01 + 02) = I 

tan 2(01 - 02) = 0 

First, we suppose that (3.16) holds. Using (3.11) together with (3.16), we have, 
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from (1.6) and from the fact that 01 = 4(0k + 02) + 4(0k - 02), 

(3.18) (1 -_ 2)X- (1 + g2)y + 2g2xy = 0. 

Similarly, using the fact that 02 = 2(01 + 02) -2 (01 - 02), we have 

(3.19) (1 + A 2)x + (1 -_ 2)y= 2. 

Solving (3.18) and (3.19) simultaneously, we find that the roots zi = (xi, yi) are 
z=(1, 1) and Z2 = (1/t2, _ 1/2). Clearly, Z2 is not allowable, since 0 < y < 2. We 
shall show later that z, is not the minimum point. 

Now suppose that (3.17) holds. The second equation of (3.17) implies that 01= 
02 + 2kw. Hence, from (3.11), we have Ml, M2 ,1 + M1, 2M2,2 = 0, i.e., from (1.6), 

(3.20) (1 -_x)2y + x2yg2 + x(l -_y) = 0. 

Moreover, 01 = 02 + 2k7r and the first equation of (3.17) implies that tan 01 = 

i.e., from (3.11) and (1.6), 

(3.21) (1 + 12)x = (1 _ -2)y 

Similarly, we have tan 02 = 1/ji, i.e., 

(3.22) (1 + , 2)x + (1 - g2)y = 2. 

Eliminating y from (3.20) and (3.21), we obtain 

(1 + ,2)2x3 - 3(1 + u2)x2 + 2x = 0 

which has roots z0 = (17(1 + 1U2) 1/(l _ g2)) Z3 = (0, 0), and z4 = (2/(1 + A 2), 

2/(1 _ 
,42)). Clearly, Z3 and z4 are not allowable, since 0 < y < 2. Eliminating y 

between (3.20) and (3.22), we obtain 

(1 + ja2)2x3 - 5(1 + ga2)X2 + 2(3 + g2)x - 2 = 0, 

which has roots z0 = (1/(1 + ,U2), 1/(l _ 12)) and 

Z5.6 = ((2 4(2(1 _ 12))1/2)/(1 + 12) F(2(1 _ 
j12))1/2/(1 _ p2)) 

Clearly, z5 is not allowable, since 0 < y < 2. We now show that z6 lies in Region I 
for all , such that 0 < ,u < 1. From (3.5), we note that T(O) - T(g) = g-2g(x, y), 
where 

(3.23) g(x, y) = X2(y2g2 + y2 + 1) + x(2y _ 4y2) + y2 

Since for all ji such that 0 < ,u < 1, 

g(Z6) = 4g2(1 _ p2)-1(1 + g2)-2L2 - 3 + 2(2(1 -_ 2))12 ] < 0, 

we have T(O) > T(p) and z6 lies in Region I rather than in Region II. 
We now show that z1 is an extraneous root. Since ril2(z1) = ,u(l + A 2)1/2 and 

rl/2(Zo) = 1l(1 + 12)1/2, rP12(zO) < rP12(zl). In fact, rP12 at zo is less than rP12 at 
any point of the boundary of Region II. This follows since the minimum point of the 
boundary of Region II is at (4/(5 + 112), 4/(3 -_ 2)) where rI1/2 < 1. Note from 
Young [11], [12] that 1 < S(2.,,) < II,y ID"' for (x, y) on the boundary of the 
square 0 ? x < 2, 0 < y < 2. Hence, the point z- = (1/(1 + 112) 1/(l- 112)) min- 
imizes the D 12-norm when restricted to Region II. 
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We now determine whether z0 lies in Region I or Region II for all values of , such 
that 0 < , < 1. From (3.23), we have g(z0) = 1 - 3p2, so that z0 lies in Region II, 
if 0 < , < (1/3)1/2, and in Region I, if (1/3)1/2 < , < 1. Clearly, z0 lies on the 
boundary C, if , = (1/3)12 . 

In conclusion, we have, if 0 < ,u ? (1/3)1/2, then the optimum relaxation param- 
eters for the D112-norm lie in Region II and are x = 1/(1 + p2) and y = 1/(1 p2). 
If (1/3)1/2 < , < 1, then the optimum values for the virtual D 12-norm lie on the 
boundary C and they are x = 4/(5 + ,2) and y = 4/(3 - 2). Notice that when 
, = (1/3)1/2 we have 1/(1 + I 2) = 4/(5 ? p2) and 1/(1- 2) = 4/(3 - ,u2). From 
Theorem 3.1, the proof of Theorem 3.2 follows. O 

Fig. 3.2 illustrates the behavior of the virtual D112-norm for p2 = 1/3. Notice 
that the virtual D"12-norm is a positive function of co and co' which is less than or equal 
to unity in Region I but greater than unity in part of Region II. 

IL~~~~. 

FIGURE 3.2. Virtual D 1/ 2-norm of S, ,, . 
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